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The case for causality

▶ To answer many urban policy questions we may need to
adopt a set of tools that allow us to make causal rather
than statistical (or predictive) inferences

▶ For example:

▶ Crime - Does intensive ‘hot spot’ policing work?
▶ Health - Do “clean air zones” reduce asthma incidence?
▶ Inequality - Does improving neighbourhood quality change

health and economic outcomes?

▶ To answer many urban policy questions we may need to
adopt a set of tools that allow us to make causal rather
than statistical (or predictive) inferences
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What is causality?

▶ “We may define a cause to be an object, followed by
another, and where all the objects similar to the first are
followed by objects similar to the second. Or in other
words where, if the first object had not been, the
second never had existed." (David Hume, 1748)

▶ “Causation is something that makes a difference, and the
difference it makes must be a difference from what would
have happened without it” (David Lewis, 1973)

▶ Key idea - the counterfactual . Alternative possibilities
that we imagine in thought experiments to unpick causality.
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Prediction vs causal inference

Prediction
▶ Detect patterns in data and fit functional relationships

between variables with accuracy.

▶ E.g., ‘the spread of an infectious disease?’, ‘how many
people will use a service?’

▶ Not a prediction of the effect that a specific choice or
decision will have on an outcome
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Prediction vs causal inference (cont’d)

Causal inference
▶ Prediction of a counterfactual associated with a particular

decision or path taken

▶ Causal inference takes a predicted counterfactual and
constructs a causal effect which, we hope, tells us
something about the state of the future world in the event
we make a specific choice.

▶ Key for policy applications. We know not only the past,
but the future
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The ladder of causation
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Heuristic vs Analytic

▶ Heuristic: Counterfactual thinking to formalise
assumptions about processes. If this theory were true, what
would prove me wrong?

▶ Analytic: Counterfactuals to make causal inferences.
Estimate the true effect of an intervention on an
outcome/process.

▶ Hybrid: Counterfactuals as a system of thinking, design,
and analysis to make more credible claims about causal
relationships.
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Potential outcomes
▶ The potential outcomes framework expresses causality in

terms of counterfactuals.

▶ A causal effect, let’s call this δi, is defined as a comparison
between two states of the world:

▶ One in which a unit, i, receives an intervention - the actual
state, let’s call this Y 1

i .
▶ One in which the unit does not receive the intervention -

the counterfactual state, Y 0
i .

▶ The individual causal (or treatment) effect of the
intervention is the simple difference in outcomes (SDO)
between the world in which the intervention occurs
compared to the one where it does not:

δi = Y 1
i − Y 0

i (1)
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The fundamental problem in causal inference

▶ However, we cannot observe both potential outcomes
because counterfactuals are hypothetical and do not exist
in reality - we only observe Yi empirically.

▶ If both potential outcomes are required to know the causal
effect, then, since it is impossible to observe both Y 1

i and
Y 0
i for the same individual, δi is unknowable.

▶ Causal inference is a missing data problem where we need
to make predictions, not of the present or future, but of a
missing past.
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The fundamental problem in causal inference (cont’d)

▶ Formalised by the switching equation which states that Y i
is a function of its potential outcomes:

Yi = DiY
1
i + (1−Di)Y

0
i (2)

Yi =

{
Y1

i if Di = 1,
Y0

i if Di = 0,
(3)

▶ If Di = 1, then Yi = Y 1
i because the second term in (2)

zeroes out. And if Di = 0, the first term zeroes and
Yi = Y 0

i .
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Potential outcomes in action

▶ But we have a distribution of both y1i and y0i in the
population. So, we can estimate ‘average treatment effects’
(ATE) across the population by comparing outcomes for
‘treatment’ (those with y1i ) and ‘control’ (those with y0i )
groups.

▶ Average treatment effects are unknowable because,
according to the switching equation, we don’t have both
potential outcomes for each observation. But it can be
estimated from samples of data.

▶ The simple difference in means between the treatment and
control groups will give us the average treatment effect
from across the population.
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Potential outcomes in action (cont’d)

SDO =
1

NT

N∑
i=1

(yi|di = 1)− 1

NC

N∑
i=1

(yi|di = 0)

= E[Yi|Di = 1]− E[Yi|Di = 0]

Which can be decomposed to:

E[Yi|Di = 1]− E[Yi|Di = 0] = E[Y 1
i |Di = 1]− E[Y 0

i |Di = 1]︸ ︷︷ ︸
Average treatment effect

+ E[Y 0
i |Di = 1]− E[Y 0

i |Di = 0].︸ ︷︷ ︸
Selection bias

Selection bias: the difference between treatment and
control groups with no intervention.
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Randomisation solves selection bias

▶ Randomisation of the assignment of Di solves the selection
problem because it ensures independence of potential
outcomes:

E[Yi|Di = 1]− E[Yi|Di = 0] = E[Y 1
i |Di = 1]− E[Y 0

i |Di = 0]

= E[Y 1
i |Di = 1]− E[Y 0

i |Di = 1]

= E[Y 1
i − Y 0

i |Di = 1]

= E[Y 1
i − Y 0

i ].

▶ Independence of Y 0
i and Di allows us to swap in

E[Y 1
i |Di = 1] in for E[Y 1

0 |Di = 1] in line 2 because because
potential outcomes for Y 0

i and Y 1
i are the same.
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Important assumptions

▶ Independence assumption - Assignment to treatment and
control group is independent of potential outcomes:
E[Y 0

i |D = 1] = E[Y 0
i |D = 0].

▶ Stable Unit Treatment Value Assumption (SUTVA):

▶ Homogeneous treatment - the level (or dosage) of the
treatment is homogeneous across groups.

▶ Non-interference - no externalities or spillover from
treatment. Treatment status of unit i does not affect
potential outcomes of unit j (e.g., (a)spatial networks).
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Summary of potential outcomes

▶ Counterfactual thinking can help us imagine two potential
outcomes for worlds in which a unit did or did not receive
an intervention.

▶ Fundamental problem in causal inference - we live in reality
and cannot observe both potential outcomes.

▶ We can make population wide comparisons across treatment
and control groups to estimate average treatment effects.

▶ But selection bias reflects endogenous sorting into
treatment and control.

▶ Randomisation solves the selection problem (under certain
assumptions)

▶ To make causal inferences we need random assignment of
interventions or to be able to simulate randomness in some
plausible way.
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RCTs and (quasi)experiments

▶ Experiments and RCTs - explicitly randomise a policy
intervention across treatment and control groups -
‘balanced’ on unobservables.

▶ Natural experiments - leverage arbitrary divergences in
laws, policies, or practices to analyse the effects of an
intervention on a population as is if they had been part of
an experiment. Looks at differences across treatment and
control groups ‘as if’ intervention was randomly assigned -
regression discontinuity.
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Moving to Opportunity (MTO) experiment:
▶ Offered low-income families from deprived urban

neighbourhoods the opportunity to move to less ‘distressed’
areas.

▶ Families randomly assigned to two treatment groups (where
they got housing vouchers to move) and a control group.

▶ Families surveyed 10-15 years later to evaluate effects on
adults and children.

▶ Treated adults had better physical and mental health
outcomes but no effect on economic outcomes

▶ No detectable effect on education outcomes and no
improvement to health outcomes expect improved mental
health among girls.

▶ Limitations include: non-compliance (50%), disruption of
moving, non-random selection into destination
neighbourhoods.
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Policing in Bogata (Blattman et al., 2021)
▶ City randomly reallocated existing

police and municipal resources
across experimental street blocks.

▶ Streets randomly assigned to one of
four treatment statuses: intensive
policing, municipal services, both,
or neither.

▶ Measure spatial spillover
(interference) into
non-experimental streets

▶ No overall decline in crime from
policing or services, differences
across violent and property crimes,
policing treatment displaced crime
into non-treatment streets.

▶ Many results not statistically
significant, but may be
substantively meaningful to policy
makers.
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Part 2. The causal inference ‘tool box’

▶ Causal inference without explicit randomisation.

▶ Toolbox of post-assignment corrections that leverage ‘as if’
random variation in interventions to recover causal
parameters:

▶ Controls, matching, & fixed-effects
▶ Difference-in-differences
▶ Regression discontinuity
▶ Instrumental variables
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Backdoor criterion

T Y

U

Figure: Unobservable U

T Y

X

Figure: Observable X

▶ Consider the standard regression equation:

yi = Tiβi +Xiδi + Ui + ϵi

▶ where Tiβi is the treatment, Xiδi are observed controls, and
Ui are unobserved confounders.
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Selection on observables: Controls

▶ Two primary reasons for including controls, Xiδi :

▶ Conditional independence assumption - assignment of an
intervention is random conditional on some observable(s)
(e.g., gender, school, neighbourhood).

▶ In reality T is likely to be correlated with unobservables, U
▶ Can’t be sure that all relevant X are accounted for -

unobservables

▶ Precision - Even if not related to the assignment probability,
including controls that are related to the outcome will
reduce residual variance increasing precision of estimates.
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Selection on observables: Matching

▶ Alternative to regression that closes back doors between
intervention and outcome

▶ Constructs comparison groups that are similar along a set
of observed matching variables using weights.

▶ In many ways similar to regression.
▶ Uses a different set of assumptions and is less model

dependent than regression.
▶ Suffers from the same fatal flaw - at least when it comes to

estimating causal effects - of assuming that our set of
observed variables are enough to close all back doors.
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Selection on observables: Fixed effects

▶ An approach to controlling for all unobserved confounders
that are fixed for some category or context.

▶ Controls for the individual unit (people, firm,
neighbourhood, city, country ...)

▶ Include a dummy variable for that ‘higher-level’ unit.

▶ Typically used in context of cross-sectional time-series data.

▶ Removing variation between units focusing upon within
unit variation over time.

▶ Can be extended to multiple fixed effects and time as well
as geography (TWFE).
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Difference-in-Differences Design

▶ Extension of TWFE logic - typically applied when we have
treatment and control groups measured across at least two
time periods.

▶ Removes time-invariant components of unobservables, U ,
that are common to treatment and control groups.

▶ Primary identifying assumption - parallel trends.

▶ No time-varying differences in unobservables between
treatment and control groups.

▶ Commonly applied to natural experiments where some
areas receive intervention by chance.
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John Snow’s cholera study (1855)
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John Snow’s cholera study (cont’d)

▶ Years of studying cholera epidemics in the 19th C led Snow
to question the prevailing miasma hypothesis

▶ Developed alternative hypothesis that disease caused by
contaminated drinking water

▶ Snow leveraged a ’natural experiment’ that allocated clean
drinking water "as if" by random

▶ Lambeth water company moved its intake pipes upstream
beyond main sewage discharge point - uncontaminated
water.

▶ Southwark and Vauxhall water company did not -
contaminated water.

▶ Proved that both companies served similar households
within the same neighbourhoods (i.e., balance on
covariates).

▶ Interpret effect of clean water while holding confounders -
hygiene, poverty, neighbourhood - constant.
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How diff-in-diff works

Table: Snow’s data

Company name 1849 1854
Southwark and Vauxhall 135 147
Lambeth 85 19

1) First difference - difference in Lambeth and S&V
outcomes in 1854.
▶ Selection bias

2) Second difference - compare Lambeth before and after
intervention.

▶ Time trends.

3) Diff-in-diff - combine differences to eliminate selection
bias and time trend

▶ Parallel trends - difference between treated and untreated
units the same pre- and post-treatment without
intervention.
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How diff-in-diff works (cont’d)

Figure: difference-in-differences estimator
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How diff-in-diff works (cont’d)

▶ Diff-in-diff estimator:

ATT = (E[Yk|Post]− E[Yk|Pre])− (E[YU |Post]− E[YU |Pre])

▶ If we plug in Snow’s data:

ATT = (19− 85)− (147− 135)

▶ This generalises to:

▶ Multiple cross-sectional units
▶ Multiple temporal units
▶ Treatment in multiple periods
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How diff-in-diff works (cont’d)
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Diff-in-diff: summary

▶ Compare changes in outcomes pre- and post-intervention
using a naturally occurring control and treatment group.

▶ Difference out unobervables across units and time.

▶ Key assumption - parallel trends. Based on a
counterfactual that cannot be empirically validated.

▶ John Snow example shows these assumptions rest on deep
empirical and contextual knowledge of the problem.
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Regression Discontinuity Design

▶ Regression discontinuity designs (RDD) leverage
interventions that are assigned at a cutoff or threshold.

▶ Units on one side of the threshold get the intervention
while those on the other do not.

▶ The idea behind RDD is that units either side of the
threshold should be very similar in terms of their
observables and, within this subpopulation, treatments is
assigned as if by random.

▶ We can estimate the causal effect of the intervention by
comparing the sub-population of units around the
threshold.

▶ Seen by many as the ‘gold standard’ in causal inference
with observational data.
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Key terminology

▶ Running variable - determines treatment status of unit.

▶ Cutoff/threshold - the specific value long the running
variable at which treatment is assigned.

▶ Bandwidth - Everything is related to everything else but
those things closer to the cutoff are more similar than
things farther from the cutoff. The bandwidth determines
how close to the cutoff we look to make our comparison.
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Doing RDD

▶ Account for how the running variable normally affects the
outcome.

▶ Choose a method for estimating the outside either side of
the cutoff (i.e., OLS, LOESS).

▶ Select a bandwidth (i.e., Gaussian kernal, IDW).
▶ Focus upon observations around the cutoff within the

bandwidth.
▶ Compare the just-barely treated units against the

just-barely untreated units.
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How RDD works
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How RDD works (cont’d)
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How RDD works (cont’d)
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How RDD works (cont’d)
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Sharp vs. fuzzy RDD
▶ In fuzzy RDD the threshold is not discrete and only

changes the probability of being assigned an intervention.

38 / 51



Key RDD assumptions

▶ Continuity assumption: In the absence of the intervention,
potential outcomes across treated and untreated groups
would not change.

▶ In other words, there is no omitted variable at the cutoff.
There is nothing else causing the discontinuity.

▶ However, this can be violated when:

▶ Units can sort their treatment status.
▶ Cutoff is endogenous to unobservables that influence the

outcome.

▶ Analyst must know the assignment rule!
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RDD with geographic boundaries

▶ Geographic borders can act as a discontinuity.
▶ When one a policy is arbitrarily implemented on one side of

a boundary and not the other.
▶ Places or observational either side are more likely to be

similar - comparable on unobservables and potential
outcomes.

▶ Challenges:
▶ Sorting - individual can sort across geographic boundaries
▶ Interference - aka spatial diffusion/spillover
▶ Context - borders not randomly assigned and thus

endogenous to outcome and potential outcomes - think
gerrymandered districts and political outcomes.
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Important ideas not discussed

▶ Estimands/treatment effects

▶ Heterogeneous treatment effects

▶ Instrumental variables (see back of slides)

▶ Synthetic controls

▶ Spatial causal inference

▶ Causal machine learning
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Summary (cont’d)
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Instrumental variables
A way of identifying causal effect of an intervention by
identifying a source of random variation in treatment
assignment that is not affected by unobservables.

The instrument, Z, mimics the explicit random assignment of T
in RCTs with something that has already randomised T in the
real-world.

Use Z to statistically isolate variation in T driven by Z and
identify causal effect of T on Y :
▶ 1) Use Z to explain T

▶ 2) Remove any part of the T that is not explained by Z

▶ 3) Use Z to explain tY removing any Y not explained by Z

▶ 4) Assess relationship between Z-explained part of T and
Z-explained part of Y
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How IV works

T Y

U

Figure: Endogeneity

T Y

U

Z

Figure: Instrumental
variable

T Y

U

Z

Figure: Exclusion
restriction violation

44 / 51



How IV works (cont’d)

Instrument variables estimation - For each Z-explained
movement in T, how much Z-explained movement in Y was
there?

Actual estimation is comparatively simple.

Most commonly performed via Two-stage least squares (2SLS):

T = γ0 + γ1Z + γ2W + υ (4)

Y = β0 + β1T̂ + β2W + ϵ (5)

Where W are controls, γ are first stage regression coefficients,
and T̂ are predicted values of T .
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Choosing instruments

Credible inference in IV depends upon the choice of IV

A valid instrumental variable must satisfy three key criteria:
▶ Relevancy: Cov(Z, Y ) ̸= 0. Statistical vs substantive

relevancy. Does Z theoretically cause Y ?
▶ Exogeneiety: Z is assigned randomly or conditionally on

controlled covariance, γ2W in first-stage equation.
▶ Exclusion restriction: Z affects Y only through its influence

on T . No "backdoor" between Z Y .
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Choosing instruments (cont’d)

Selecting an instrument:
▶ Theoretically identify all possible source of variation in T
▶ Select ones that are least likely to be correlated with U .

Exclusion resctrivtion.
▶ DAGs are especially helpful here

▶ Estimate first stage equation to see if Z is a sufficiently
strong (relevant) predictor of T .
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Bad instruments

Figure: Rainfall IV
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Good instruments?
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Do highways cause suburbanisation?

Baum-Snow (2007) - did contruction of radial highways cause
population decentralisation in US cities?

Baum-Snow et al., (2014) - did contruction of radial highways
cause population decentralisation in Chinese cities?
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IV summary

▶ Well identified ID can recover causal effects of urban policy
interventions.

▶ However, credible inference from IV is not mechanistic.
▶ Requires strong theoretical consideration of the instrument

and variation in T .
▶ Strong theory must be used to justify the two main

identifying assumptions:
▶ Relevance: Z is relevant predictor of T .
▶ Exogenous: Z is assigned randomly or "as if" by random
▶ Exclusion restriction: Z is uncorrelated with Y .

Z → T → Y
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